
Journal of Statistical Physics, Vol. 117, Nos. 5/6, December 2004 (© 2004)

Random Multi-Overlap Structures and
Cavity Fields in Diluted Spin Glasses
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We introduce the concept of Random Multi-Overlap Structure (RaMOSt) as
a generalization of the one introduced by Aizenman, Sims and Starr for non-
diluted spin glasses. We use such concept to find generalized bounds for the
free energy of the Viana-Bray model of diluted spin glasses and to formu-
late and prove the Extended Variational Principle that implicitly provides the
free energy of the model. Then we exhibit a theorem for the limiting Ra-
MOSt, analogous to the one found by F. Guerra for the Sherrington–Kirk-
patrick model, that describes some stability properties of the model. Last, we
show how our technique can be used to prove the existence of thermodynamic
limit of the free energy. The present work paves the way to a revisited Parisi
theory for diluted spin systems.

KEY WORDS: Diluted spin glasses; overlap structures; cavity fields; general-
ized bound; extended variational principle.

1. INTRODUCTION

The diluted mean field spin glasses are important both for their correspon-
dence to random optimization problems and for their sort of intermediate
nature halfway from idealized mean field models to short range realistic
ones, thanks to the finite degree of connectivity.

Among the few rigorous results obtained so far in diluted spin
glasses, two important examples are refs. 3 and 5, where S. Franz and
M. Leone found bounds for the free energy of diluted spin systems, con-
sidering the first level of Replica Symmetry Breaking; while D. Panchenko
and M. Talagrand found a way to consider any level Broken Replica Sym-
metry Bound in a compact way, using a weighting scheme inspired by
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ref. 1. In the high temperature region, rigorous results have been obtained
for the K-Sat model of diluted spin glass by Talagrand(7) and by Guerra
and Toninelli for the Viana–Bray model.(4)

In the case of non-diluted models, Aizenman, Sims and Starr recen-
lty introduced the concept of ROSt (Random Overlap Structures) through
which they found bounds for the free energy in a very elegant and easy
manner. In the same important paper,(1) the authors expressed the solu-
tion through an Extended Variational Principle. An important restriction
of the ROSt space has been done by F. Guerra,(2) exhibiting invariance of
the limiting ROSt under certain transformations.

After the introduction of the basic definitions in Section 2, we extend
the ideas of ref. 1 to diluted spin glasses, in Section 3. The finite connectiv-
ity requires that we consider Multi-Overlap as opposed to Overlap Struc-
tures (because the couplings are not Gaussian). In Section 4 we prove a
generalized bound for the free energy of the Viana–Bray model, by means
of an interpolation not based on the iterative approach of ref. 6 used to
find bounds in refs. 3 and 5 Rather, our interpolation is closer to the one
used for non-diluted models in ref. 1. As a consequence we can (like in
ref. 1) formulate an Extended Variational Principle for the free energy. The
next natural step we performed, in Section 5, is the search for invariant
transformations of the optimal limiting Random Multi-Overlap Structure
(RaMOSt), and we found stability properties similar to those found for
non-diluted systems in ref. 2. Appendix A is devoted to a calculation that
plays a basic role throughout the paper, Appendix B contains a somewhat
new proof of the existence of the thermodynamical limit of the free energy,
Appendix C reports some comments about optimal vs. non-optimal
RaMOSt’s in terms of the phenomenon of overlap coalescence and gen-
eralized trial functions.

2. MODEL, NOTATIONS, DEFINITIONS

We refer to ref. 4 for an introduction to the Viana–Bray model,
a physical description, the role of replicas and multi-overlaps, the infi-
nite connectivity limit and the connection to the Sherrington–Kirkpatrick
model, the behavior in the annealed region.

We will have in mind a lattice with a large bulk of N sites (cavity)
and M additional spins (N is large and M is fixed).

Notations:

α,β,h are non-negative real numbers (degree of connectivity, inverse
temperature and external field, respectively);
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Pζ is a Poisson random variable of mean ζ ;
{iν}, {lν} are independent identically distributed random variables, uni-
formly distributed over the cavity points {1, . . . ,N};
{jν}, {kν} are independent identically distributed random variables,
uniformly ditributed over the added points {1, . . . ,M};
{Jν}, {Ĵν}, {J̃ν}, J are independent identically distributed random vari-
ables, with symmetric distribution;
J is the set of all the quenched random variables above;
σ : j →σj =±1, τ : i →τi =±1 are the added and cavity spin configu-
rations respectively; ρ. will be used for the spins in the full lattice (the
points of which are denoted by r, s) without distinguishing between
cavity and added spins;
πζ (·) is the Poisson measure of mean ζ ;
E is an average over all (or some of) the quenched variables;
ωJ is the Bolztmann–Gibbs average explicitly written below;

K is a product of the needed number of independent identical cop-
ies (replicas) of ωJ , in a system with K spins;
〈·〉 will indicate the composition of an E-type average over some
quenched variables and some sort of Boltzmann–Gibbs average over
the spin variables, to be specified each time.

We will often drop the dependance on some variables or indices or
slightly change notations to lighten the expressions, when there is no
ambiguity. In absence of external field, the Hamiltonian of the system of
M sites is, by definition

HM(σ,α;J )=−
PαM∑
ν=1

Jνσjν σkν .

When there is an external field h, the Hamiltonian is HM +H ext
M , where we

used the definition H ext
M (σ,h)=−h

∑M
j=1 σj .

We follow the usual basic definitions and notations of thermodynam-
ics for the partition function and the free energy per site

ZM(β,α,h;J )=
∑
{σ }

exp(−β(HM(σ,α;J )+H ext
M (σ,h))),

−βfM(β,α,h)= 1
M

E ln ZM(β,α;J )

and f = limM fM .
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The Boltzmann–Gibbs average of an observable O is

ωJ (O)=ZM(β,α,h;J )−1
∑
{σ }

O(σ ) exp(−β(HM(σ,α;J )+H ext
M (σ,h))).

The multi-overlaps are defined (using replicas) by

qn = 1
N

N∑
i=1

τ
(1)
i · · · τ (n)

i , q̃n = 1
M

M∑
j=1

σ
(1)
j · · ·σ (n)

j .

We are going to use the two following independent auxiliary Hamiltoni-
ans:

κ(τ, α;J )=−
PαM∑
ν=1

Ĵντiν τlν , (1)

η(τ, σ,α;J )=−
P2αM∑
ν=1

J̃ντiν σjν ≡
M∑

j=1

ηjσj , (2)

where ηj is the Cavity Field acting on σj defined by

ηj =
P2α∑
ν=1

J j
ν τ

i
j
ν

and the index j of J
j
ν and τ

i
j
ν

de-numerates independent copies of the cor-
responding random variables.

The two expressions of η define the same random variable, but the
first is probably the most convenient for the calculations Sections 3 and
4, while the second describes better the physics of the model, and will be
essential in Section 5.

3. GENERALIZED BOUND FOR THE FREE ENERGY

For t ∈ [0,1], consider the following Interpolating Hamiltionian

H(t)=HM(tα)+κ(tα)+η((1− t)α)+H ext
M
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and using a set of weights ξτ define

RM(t)= 1
M

E ln

∑
τ,σ ξτ exp(−βH(t))∑

τ ξτ exp(−βκ)
. (3)

Call GM the value of RM at t =0,

GM(β,α,h; ξ)= 1
M

E ln

∑
τ,σ ξτ exp(−β(η+H ext

M ))∑
τ ξτ exp(−βκ)

,

then

RM(0)=GM,

RM(1)=−βfM.

Theorem 1. (generalized bound).

−βf � lim
M→∞

inf
ξ

GM.

Proof. The proof is based on Lemma 1, Appendix A.
Define

ϒ(m1,m2,m3)= exp

(
β

(
m1∑
ν=1

Jνσjν σkν +
m2∑
ν=1

Ĵντiν τlν +
m3∑
ν=1

J̃ντiν σjν

))
. (4)

Let us compute the t-derivative of RM , keeping in mind that its denomi-
nator does not depend on t .

d

dt
RM(t) = d

dt

1
M

E ln

∑
τ,σ ξτϒ(PtαM,PtαM,P(1−t)2αM)∑

τ ξτ exp(−βκ)

= 1
M

0,∞∑
{m.}

d

dt
πtαM(m1)πtαM(m2)π(1−t)2αM(m3)

×E ln
∑
τ,σ

ξτϒ(m1,m2,m3).

Now we have the sum of three terms, in each of which one of the π ’s is
differentiated with respect to t . As in Appendix A, we can substitute into
the first term the following relation:

ϒ(m1,m2,m3)= exp(βJm1σjm1
σkm1

)ϒ(m1 −1,m2,m3)
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and we can do the same for the other two terms.
It is clear then that as in Lemma 1 of Appendix A we get an average


ξ,t with weights consisting of the weights ξτ times the Boltzmann–Gibbs
weights associated to H(t):

d

dt
RM(t) =α[E ln 
ξ,t exp(βJσj.σk. )+E ln 
ξ,t exp(βJ τi.τl. )

−2E ln 
ξ,t exp(βJ τi.σj. )].

According to Appendix A we will get now some terms in cosh(βJ ), such
terms can be factorized out, but here they are cancelled since they sum up
to zero. Since

Eω2n
t (σj.σk. )=〈q̃2

2n〉t , Eω2n
t (τi.τl. )=〈q2

2n〉t , Eω2n
t (τi.σj. )=〈q2nq̃2n〉t ,

following the last steps of Lemma 1 we finally get

d

dt
RM(t)=−α

∞∑
n=1

1
2n

E tanh2n(βJ )〈(q2n − q̃2n)
2〉t . (5)

Thus

d

dt
RM(t)�0,

which implies RM(1)�RM(0) , i.e.,

−βfM �GM

for all ξ and M, hence

−βfM � inf
ξ

GM. (6)

Notice that we could obtain the same bounds using any other η and
κ leading to the bound (6). Even more is true, we could pre-assign the val-
ues qn and forget that they are overlaps of configurations in a lattice with
N spins, which therefore is not an essential setting. Such remark explains
the introduction of the following:(1)

Definition 1. A RaMOSt R is a triple (�, {qn}, ξ) where
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• � is a discrete space;

• ξ :� →R+ is a system of random weights;

• qn : �n → [0,1], n ∈ N, |q| � 1 is a positive definite Multi-Overlap
Kernel (equal to 1 only on the diagonal of �n).

Sometimes one considers the closure of �, which is not discrete in gen-
eral. For any RaMOSt one takes a couple of auxiliary random variables
compatible with the Multi-Overlap Kernel and with (6), and the previous
theorem could be stated(1) as

−βfM � inf
R

GM. (7)

The RaMOSt associated to the special choice explicitly exhibited in the
previous theorem is called Boltzmann RaMOSt.

The generality of the RaMOSt allows one to take � (which is not
necessarily {−1,1}N ) as the set of indexes of the weights ξγ , γ ∈ � con-
structed by means of Random Probability Cascades of Poisson–Dirichlet
processes (see e.g., ref. 5). A well-known property of these Cascades (see
e.g., Eq. 4.2 in ref. 5) gives place to a chain of expectations of Parisi type
(see e.g., Eq. 5.5 in ref. 5), that coincides with the Parisi Replica Symme-
try Breaking theory if one interpolates according to the iterative approach
of ref. 6, like in refs. 3 and 5. Since we interpolate with different auxil-
iary Hamiltonians, in our case (taking identical copies of ηγ and κγ in
(3) and summing also over γ ) the chain of expectations is not equivalent
to the Parisi Replica Symmetry Breaking in the sense of ref. 6. This point
will be deepened elsewhere.(8) In order to get the Parisi Replica Symme-
try Breaking theory in the traditional sense, one should take (like in ref. 1
for non-diluted models) a sequence of suitably chosen ηγ and κγ such that
the corresponding bounds would be the special realization of (7) with the
Parisi RaMOSt, like in ref. 1 for non-diluted models.

4. EXTENDED VARIATIONAL PRINCIPLE

We can express the free energy of the model in the form of the fol-
lowing.

Theorem 2. (extended variational principle).

−βf = lim
M→∞

inf
R

GM.
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In order to prove the Extended Variational Principle, we will find, in
Theorem 3, the opposite bound to (7), like in ref. 1. Notice first that the
following Cesàro limit can be easily computed

C lim
N

1
M

E ln
ZN+M

ZN

=−βf, (8)

since, thanks to the cancellation of the common terms of the numerator
and denominator

1
N

N∑
K=1

1
M

E ln
ZK+M

ZK

= 1
N

1
M

(E ln ZN+M +· · ·+E ln ZN+1 −E ln Z1 −· · ·−E ln ZM) (9)

and the first M terms, with the positive sign, tend to −βf ; while the oth-
ers, with the negative sign, vanish in the limit.

Theorem 2 will be proven if we prove the following.

Theorem 3. (reversed bound).

−βf � lim
M→∞

inf
R

GM.

Proof. If we prove the statement for the restricted RaMOSt space of
the R’s such that ξτ is(1) the Boltzmann–Gibbs factor

ξτ = exp[−β(HN(τ)+H ext
N (τ))]≡ ξ̄N , (10)

then the theorem will hold a fortiori. Hence, given (8), it is enough to show

C lim
N

1
M

E ln
ZN+M

ZN

� lim inf
N

GM |ξτ =ξ̄N
. (11)

We can re-write GM as

1
M

E ln
[∑

τ,σ exp(−β(HN+η))

ZN+M(α′)
ZN+M(α′)
ZN+M(α)

ZN+M(α)

ZN(α)

ZN(α)∑
τ exp(−β(HN+κ))

]

and therefore we have four terms.
The rest of the proof is very similar to the proof of Theorem 4.
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Recall that the sum of Poisson random variables is a Poisson random
variable with mean equal to the sum of the means. So if we take

α′ =α
(N +M)

N
,

we see that the forth fraction is the same as ZN(α)/ZN(α′). Furthermore,
since α′(N + M) − α(N + M) = α′N − αN,α′ → α, in the limit the second
and forth fractions cancel out thanks to Lemma 1 in Appendix A. We
have seen that the third fraction tends to −βf .

Now we proceed with a simple but crucial step of our approach. In
the denominator of the first fraction we can split the mean α′(N + M)

into the sum of three means such that HN+M splits into the sum of three
Hamiltonians with the first depending only on cavity spins τ , the second
containing interactions between the cavity and the added spins, the third
has the added spins only. In other words, we are considering the fraction
of the interactions (indexed by ν) within the cavity, between the cavity
and added spins, within the added lattice respectively. Hence the new three
means will be proportional to N2,2NM,M2 respectively. More explicitly

ZN+M(α′) =
∑
ρ

exp


β

Pα′(N+M)∑
ν=1

Jνρrν ρsν




=
∑
τ,σ

expβ(

P
ζ̆∑

ν=1

Jντiν τlν +
P

ζ̃∑
ν=1

Jντiν σjν +
P

ζ̂∑
ν=1

Jνσjν σkν ),

where

ζ̆ =α′ N2

N +M
, ζ̃ =α′ 2NM

N +M
, ζ̂ =α′ M2

N +M
.

The third Hamiltonian is thus negligible. This means that when the cavity
is large the added spins do not interact one another.

The choice of α′ we made guarantees that numerator and denomi-
nator contain two (up to a negligible third in the denominator) identi-
cal Hamiltonians with the same connectivities. As a consequence, the first
fraction in GM vanishes in the limit and the theorem is proven.
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5. LIMITING RaMOSt INVARIANCE

As in Appendix A,

A =E ln cosh(βJ )−
∞∑

n=1

1
2n

E tanh2n(βJ )〈q2
2n〉

=
∞∑

n=1

1
2n

E tanh2n(βJ )(1−〈q2
2n〉).

Then we can state the following.

Theorem 4. In the whole region where the parameters are uniquely
defined, the following Cesàro limit is linear in M and ᾱ

C lim
N

E ln 
N

{∑
σ

exp[−β(η(α)+κ(ᾱ))]

}
=M(−βf +αA)+ ᾱA. (12)

Proof. The proof is based on the comparison between the limit
above and (9), similarly to the method of Section 4. More precisely, on the
left-hand side of (12) can be re-written (without the limit) as

E ln 
Nϒ(0, PαN+ᾱ, P2αM)

=E ln

∑
τ,σ ϒ(0, PαN+ᾱ, P2αM)

ZN+M(α′)
ZN+M(α′)
ZN+M(α)

ZN+M(α)

ZN(α)

=E ln

∑
τ,σ ϒ(0, PαN+ᾱ, P2αM)∑

τ,σ ϒ

(
P

α′ M2
(N+M)

,P
α′ N2

(N+M)

,P
α′ 2NM

(N+M)

) ZN+M(α′)
ZN+M(α)

ZN+M(α)

ZN(α)
.

We know that the third fraction will give −βf M. But is is also clear that
if we take

α′ = (N +M)

N2
(αN + ᾱ),

the three parameters in the numerator of the first fraction tend to the cor-
responding ones in the denominator, so that the first fraction is immaterial
in the limit. Now notice that

α′(N +M)−α(N +M)→αM + ᾱ
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and therefore thanks to Lemma 1 of Appendix A the contribution of the
second fraction is

(αM + ᾱ)A.

If we now write

∑
σ

exp(−βη)=
M∏

j=1

2 cosh


β

P2α∑
ν=1

J j
ν τ

i
j
ν


≡ c1 · · · cM,

we can formulate (12) as

C lim
N

E ln 
N {c1 · · · cM expκ(ᾱ)}=M(−βf +αA)+ ᾱA

from which it is clear that each cavity field (more precisely each cj ) yields
a contribution (−βf +αA) in the limit.

Notice that in the limiting structure not only the cavity fields are
mutually independent, but they are independent of κ as well. We have
thus obtained the analogy with the result of F. Guerra regarding the
Sherrington–Kirkpatrick model.(2)

CONCLUSIONS

It is important now to formulate in a complete manner the Parisi the-
ory for diluted spin glasses De Sanctis and Guerra, in preparation and to
deepen the analysis of the invariance properties of the optimal RaMOSt
in order to characterize the solution. We plan to dedicate future work to
this program.

APPENDIX A.. CONNECTIVITY SHIFT

Lemma 1. Let α′N =α(N +�), with �/N →0 as N →∞. Then, in
the whole region where the parameters are uniquely defined

lim
N

E ln
ZN(α′)
ZN(α)

=α�[E ln cosh(βJ )−
∞∑

n=1

〈q2
2n

〉
2n

E tanh2n(βJ )].
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Proof. The proof is based on standard convexity arguments.
For t ∈ [0,1], define

α′
t =α(1+ t

�

N
)

so that α′
t →α as N →∞.

Since the sum of Poisson random variables is a Poisson random var-
iable with mean equal to the sum of the means, we have

At ≡E ln
ZN(α′

t )

ZN(α)
=E ln 
 exp(−βκ(αt�)).

Let us compute the t-derivative of A(t):

d

dt
At =E

∞∑
m=0

d

dt
παt�(m) ln

∑
τ

exp

(
β

m∑
ν=0

Jντiν τlν

)
.

Using the following elementary property

d

dt
πtζ (m)= ζ(πtζ (m−1)−πtζ (m)),

we get

d

dt
At = α�E

∞∑
m=0

[παt�(m−1)−παt�(m)] ln
∑
τ

exp

(
β

m∑
ν=1

Jντiν τlν

)

= α�E ln
∑
τ

exp(βJ τiν τlν ) exp

(
β

Pαt�∑
ν=1

Jντiν τlν

)

−α�E ln
∑
τ

exp

(
β

Pαt�∑
ν=1

Jντiν τlν

)

= α�E ln 
t exp(βJ τiν τlν ),

where we included the t-dependent weights in the average 
t . Now use the
following identity

exp(βJ τiτl)= cosh(βJ )+ τiτl sinh(βJ ),
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to get

d

dt
At =α�E ln 
t [cosh(βJ )(1+ tanh(βJ )τiν τlν )].

We have already observed that

E ω2n
t (τi.τl. )=〈q2

2n〉t ,

so if we now expand the logarithm in power series, we see that the result
does not depend on t in the limit of large N , because α′

t →α and hence

t → 
. Therefore integrating back against t from 0 to 1 is the same as
multiplying by 1. Thanks to the symmetric distribution of J we get the
result, where the odd powers are missing.

APPENDIX B.. THERMODYNAMIC LIMIT

Our new interpolation method should allow one to prove the exis-
tence of the thermodynamic limit (already proven in ref. 3), for otherwise
it would be quite weak. As a matter of fact, such theorem turns out to be
elementary with our interpolation.

It is well known that a sufficient condition for the existence of the
thermodynamic limit is the sub-additivity of the free energy. In our con-
text we want to measure the change caused by adding the M additional
spins to the cavity of size N and make sure that

E ln ZN+M �E ln ZN +E ln ZM.

The natural start is therefore considering the following interpolation:

E ln
∑

s

exp[−β(HN+M(tα)+HN((1− t)α)+HM((1− t)α))]≡�t .

We clearly proceed by splitting HN+M in the usual way, and we get this
time a total of five Hamiltonians. In the t-derivative the parts in cosh(βJ )

cancel out, since the sum of the five coefficients of α is zero. The remain-
ing terms are

d

dt
�t =−α

∞∑
n=1

E tanh2n(βJ )

2n
Bn,t ,
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where

Bn,t =
{

1
N +M

[〈(q2nN)2 +2q2nNq̃2nM + (q̃2nM)2〉t ]−〈q2
2nN + q̃2

2nM〉t
}

.

Now it is trivial to show that

Bn,t =− 1
N +M

NM〈(q2n − q̃2n)
2〉t �0.

APPENDIX C.. SUM RULES, TRIAL FUNCTIONS, DLR BOUNDARY

Consider the function �t defined Appendix B, then the fundamental
theorem of calculus implies

E ln ZN+M −E ln ZN =E ln ZM +
∫ 1

0

d�t

dt
dt.

Dividing by M and taking the Cesàro limit as N goes to infinity yields the
following sum rule

−βf (β,α)=−βfM(β,α)−α

∞∑
n=1

E tanh2n(βJ )

2n
C lim

N

∫ 1

0
〈(q2n − q̃2n)

2〉t dt,

which shows that the difference f − fM is given in terms of the multi-
overlap distance averaged over any optimal RaMOSt.

If we instead use the fundamental theorem of calculus for RM(t)

defined in Section 3, we get another sum rule

−βfM =GM(R, η, κ)−α

∞∑
n=1

E tanh2n(βJ )

2n
C lim

N

∫ 1

0
〈(q2n − q̃2n)

2〉t dt,

which explains, when M goes to infinity, the role of GM(R, η, κ) as trial
function; minimizing it means finding optimal RaMOSt’s (and therefore
the free energy) and the multi-overlap locking (coalescence) described by
Aizenman in the case of non-diluted models.(8) The two sum rules above
show that the RaMOSt is a generator of trial multi-overlaps and it can be
seen as a reservoir which tends to align the multi-overlaps of the system to
its own ones. In other words, the distribution of the multi-overlaps is the
functional order parameter and the RaMOSt-reservoir can also be seen as
a DLR boundary since it discriminates the phases of the system.
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